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Abstract. A hidden overall factor of 2 log2(2s + 1) is detected, when the co-planar Braunstein–
Caves (BC) inequality for Einstein–Podolsky–Rosen–Bohm spin-s entanglement is expressed in
terms of an information theoretic index of correlation. It is observed that the size of violation
of the normalizedco-planar BC inequality—which is defined by eliminating the overall factor
2 log2(2s + 1) from the original BC inequality—decreases with the increase of the spin values,
thus exhibiting a satisfactory behaviour in the classical limit.

Entropic Bell inequalities (Braunstein and Caves 1988, 1990, Cerf and Adami 1997,
Wodkiewicz 1995) have been used to highlight the non-classical nature of quantum
entanglement. The usefulness of these information theoretic inequalities is that they are
applicable to any pair of entangled systems—not just two-state systems, as formulated in
the case of usual correlation Bell inequalities, such as e.g., Clauser–Horne–Shimony–Holt
inequalities (Clauseret al1969). It was Braunstien and Caves (1988) who first formulated the
information theoretic Bell inequalities, which apply to any pair of spatially separated entangled
physical systems. They observed that the Einstein–Podolsky–Rosen–Bohm (EPRB) (Bohm
1951, Einsteinet al 1935) spin-s correlations violate these information theoretic inequalities
for all values of spins, for a specified co-planar geometry of analyser orientations. It has
been observed (Braunstein and Caves 1988, 1990) that the strength of violation grows as spin
s increases, even though the range of analyser orientation angles, over which the violation is
observed, decreases with the increase ofs. According to Braunstein and Caves, ‘The biggest
surprise. . .is not the presence of violation for alls, but rather the increasing size of violation
ass increases. . .’ (Braunstein and Caves 1990).

In this paper we identify that there is a hidden overall factor 2 log2(2s +1) in the co-planar
BC inequalities, which leads to the increasing size of violation with the increase ofs. We show
that the normalized co-planar BC inequalities, obtained by eliminating this overall factor, give
rise to the opposite result, namely, decreasing size of violation as spins increases.

We construct joint information entropy (in bits)H(Ea, Eb) for EPRB spin-s correlations
through

H(Ea, Eb) = −
s∑

λa,λb=−s
Ps(λa, λb; θ) log2Ps(λa, λb; θ) (1)

where

Ps(λa, λb; θ) = 1

(2s + 1)2

2s∑
k=0

(−1)k(2k + 1)c(sks; λa0λa)c(sks; λb0λb)Pk(cosθ) (2)
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are the quantum mechanical non-local (analyser-dependent) joint probabilities (Mermin 1980,

Usha Deviet al 1997) that the spin componentÊS1 · Ea of particle 1 isλa along the analyser

orientationEa and the spin componentÊS2 · Eb of particle 2 isλb along the analyser orientationEb;
c(sks; λ0λ) denote the Clebsch–Gordan coefficients andθ is the angle between the analyser
orientationsEa andEb. The individual probabilitiesPs(λa),Ps(λb), which govern the isolated
measurements made independently on particles 1 and 2 can be derived (Usha Deviet al 1997)
from the joint probabilities:

Ps(λa) =
s∑

λb=−s
Ps(λa, λb; θ) = 1

(2s + 1)

Ps(λb) =
s∑

λa=−s
Ps(λa, λb; θ) = 1

(2s + 1)
.

(3)

In statistical terminology (Feller 1967),Ps(λa),Ps(λb) are referred to as marginal
probabilities, since they are realized as marginals of the joint probabilitiesPs(λa, λb; θ).

The joint information entropyH(Ea, Eb) gives the total information carried jointly by the

spin componentŝES1 · Ea andÊS2 · Eb. The informationH(Ea) andH(Eb) carried separately bŷES1 · Ea
and ÊS2 · Eb are defined using the marginal probabilitiesPs(λa),Ps(λb):

H(Ea) = −
s∑

λa=−s
Ps(λa) log2 Ps(λa) = log2(2s + 1),

H(Eb) = −
s∑

λb=−s
Ps(λb) log2Pj (λb) = log2(2s + 1).

(4)

The conditional information entropyH(Ea|Eb) gives the information carried by the spin

component̂ES1 · Ea under the condition thatÊS2 · Eb has assumed a certain value, and is defined by

H(Ea|Eb) = −
s∑

λa,λb=−s
Ps(λa, λb; θ) log2Ps(λa|λb; θ)

= H(Ea, Eb)−H(Eb)
= H(Ea, Eb)− log2(2s + 1). (5)

In the above equation we have used the Bayes theorem (Feller 1968)

Ps(λa|λb; θ) = P
s(λa, λb; θ)
Ps(λb)

= (2s + 1)Ps(λa, λb; θ) (6)

for the conditional probabilitiesPs(λa|λb; θ).
It has been realized (Barnett and Phoenix 1989) that the mutual information entropy, i.e.,

the average information carried in common by the subsystems A and B of an entangled system,
given by

H(A;B) = H(A) +H(B)−H(A,B) (7)

whereH(A), H(B) andH(A,B) denote, respectively, the subsystem entropies and the joint
entropy, serves as an information theoretic index of correlation. The mutual information
entropy is zero when the joint probabilityP(A,B) = P(A)P (B) H⇒ H(A,B) =
H(A)+H(B), i.e. only when the subsystems are statistically independent. If the subsystems are
labelled such thatH(B) > H(A), the triangular inequalities (Wehrl 1978) for the information
entropies,

|H(A)−H(B)| 6 H(A,B) 6 H(A) +H(B) (8)
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lead to the following bounds for the mutual information entropy:

06 H(A;B) 6 2H(A). (9)

Thus, a normalized correlation index 06 HN(A;B) 6 1 can be defined as

HN(A;B) = H(A) +H(B)−H(A,B)
2H(A)

. (10)

For EPRB spin correlations, the normalized index of correlationHN(Ea; Eb) ≡ I s(θ) is given by

I s(θ) = 2 log2(2s + 1)−H(Ea, Eb)
2 log2(2s + 1)

= 1

2
− H(θ)

2 log2(2s + 1)
(11)

where we have used equation (5) to express joint information entropyH(Ea, Eb) in terms of
conditional entropyH(Ea|Eb) ≡ H(θ). We have plottedI s(θ) in figure 1 as a function of the
angleθ between the analyser orientations, for spin valuess = 1

2, 1,
3
2 and 2. We observe

that the correlation index reaches the maximum value1
2 for parallel and anti-parallel analyser

orientations. The increasing trend ofI s(θ) for θ → 0◦ andθ → 180◦ highlights the strong
correlation between the spins for nearly parallel and nearly anti-parallel analyser orientations.
In the large-s, small-θ limit, the index of correlationI s(θ) assumes the form

I s(θ) ∼ 1

2
− (sθ)2

6 log2(2s + 1)

(
log2

1

(sθ)2
+

8

3
log2 e

)
(12)

where it can be clearly seen thatI s(θ)→ 1
2 asθ → 0◦.

We now take up the information theoretic Braunstein–Caves (BC) inequalities which
involve the conditional information entropies in the form

H(Ea|Eb) 6 H(Ea|Eb′) +H(Eb′|Ea′) +H(Ea′|Eb) (13)

whereEa, Eb′, Ea′, Eb denote orientations of the analysers corresponding to particles 1 and 2 in
four different sets of experimental runs. The BC inequalities dictate that the subsystem of
any entangled system must carry an amount of information to be consistent with the local
realistic theory. However, quantum correlations involving a pair of spin-s particles in a singlet
state are observed (Braunstein and Caves 1988, 1990) to violate BC inequalities and hence are
inconsistent with local realism. For the special caseEa, Eb′, Ea′ andEb are co-planar and when the
successive vectors in the list are separated by an angleθ

3 (i.e., Ea · Eb′ = Ea′ · Eb = Ea′ · Eb = cosθ3
andEa · Eb= cosθ ), the BC inequality is violated if

H(θ) ≡ H(θ)− 3H

(
θ

3

)
(14)

is positive.
It has been observed that the co-planar BC inequality is violated for all values ofs. The

violation is often attributed to the tight correlation between spins in the region of violation.
With a view to examine the violation in terms of the strength of correlation, we express the
conditional entropyH(θ) = log2(2s + 1)(1− 2I s(θ)), in terms of the index of correlation
(using equation (11)) in the co-planar BC inequality to obtain

2 log2(2s + 1)

[
3I s

(
θ

3

)
− I s(θ)

]
− 2 log2(2s + 1) 6 0. (15)
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Figure 1. Information theoretic index of correlationI s(θ) for EPRB spin-s correlations as a
function of the analyser orientation angleθ . (a) spin-12 , (b) spin-1, (c) spin-32 , (d) spin-2.

Note that in the above equation, there is an overall factor 2 log2(2s + 1) which increases with
the increase of spin values. We define the‘normalized’BC inequality for co-planar geometry
through

Is(θ) ≡ 3I s
(
θ

3

)
− I s(θ)− 16 0. (16)

As the range of violation of any inequality remains unaltered by multiplying it throughout
by a positive number, thenormalizedBC inequality is expected to be violated in the range of
anglesθ for whichH(θ) (of equation (14)) is positive. However, from the form of equation (16)
it could be observed thatIs(θ) cannot be positive ifI s( θ3) <

1
3. This observation leads to the

identification of atight correlation domainas one in which the index of correlationI s > 1
3.

Note that a variation of the index of correlation from13 + 1 to δ, (1, δ are positive and are
bound through 06 I s 6 1

2) when the analyser orientations change fromθ3 to θ , leads to the
violation of equation (16), if 31− δ > 0.

In order to verify the variation of the size of violation with the increase ofs we have
plottedIs(θ) in figure 2 as a function of the angleθ for spin valuess = 1

2, 1,
3
2 and 2, in

the region of violation. The important feature that could be noted from figure 2 is thatthe
strength of violation decreases with the increase of spin values. We, therefore, realize that it
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Figure 2. The left-hand side of normalized BC inequality (equation (16))Is (θ) as a function of
the angleθ for different values of spin in the region of violation.The inequality is violated ifIs (θ)
is positive. Curvea: spin-12 ; curveb: spin-1; curvec: spin-32 ; curved: spin-2.

is thishidden overall factor2 log2(2s + 1) in the original BC inequality which gives rise to the
increasing size of violation as spin value increases.

To further emphasize this observation, we consider the large-s, small-θ form of Is(θ):

Is(θ) ∼ (sθ)2

9 log2(2s + 1)

(
log2

1

3(sθ)2
+

8

3
log2 e

)
(17)

which is positive for(sθ)2 6 e
8
3

3 . The functionIs(θ) reaches a maximum when(sθ0)
2 = e

5
3

3
giving rise to the maximum strength of violation as

Is(θ0) = e
5
3 log2 e

27 log2(2s + 1)
(18)

in the large-s, small-θ limit. It could be observed that, due to the presence of the factor
log2(2s + 1) in the denominator, the size of violation decreases with the increase of spins.

In general, for four different pairs of analyser orientations(Ea, Eb′), (Ea′, Eb′), (Ea′, Eb) and(Ea, Eb),
the normalized BC inequality is given by

HN(Ea; Eb′) +HN(Eb′; Ea′) +HN(Ea′; Eb)−HN(Ea; Eb) 6 1 (19)

where HN(Ea; Eb′),HN(Eb′; Ea′),HN(Ea′; Eb),HN(Ea; Eb), are the mutual information entropies
normalized to their maximum value 2 log2(2s + 1). Observe that the four parts of mutual
information entropies of the normalized BC inequality involve quantum mechanical joint
probabilities, which can be determined from the statistics of experimental runs with four
different analyser orientations. We emphasize that the mutual entropies contained in the
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normalized BC inequality provide an equally suitable physical basis when compared with the
conditional entropies involved in the original BC inequality. The significance of the normalized
BC inequality is that it exhibits a satisfactory behaviour in the classical limits →∞.

The chained information inequality of Braunstein and Caves (1988), which extends
the inequality equation (13) to involveN = 2Q orientations of the analysers,
Ea1, EbQ, Ea2, EbQ−1, . . . , EaQ−1, Eb2, EaQ, Eb1, assumes, after normalization, the form

(N − 1)I s
(

θ

(N − 1)

)
− I s(θ) +

(
1− N

2

)
6 0 (20)

for co-planar geometry (where the vectorsEa1, EbQ, Ea2, EbQ−1, . . . , EaQ−1, Eb2, EaQ1 are co-planar
and the successive vectors are separated by an angleθ

(N−1) ), and in the limitN → ∞, leads

to a simpler formI s(θ) > 1
2, which is violated for allθ except multiples ofπ , confirming the

earlier observation of Braunstein and Caves (1988).
In conclusion, we have studied information theoretic index of correlation (which is nothing

but the normalized mutual information entropy) for EPRB spin-s correlations. The information
theoretic BC inequality, when expressed in terms of the correlation index, reveals a overall
factor 2 log2(2s + 1), which is observed to give rise to the increasing size of violation of the
inequality ass increases. We have shown that the size of violation of thenormalizedBC
inequality—obtained by dividing the original BC inequality by the factor 2 log2(2s + 1)—
decreases with the increase of spins, thus restoring a satisfactory behaviour in the classical
limit s →∞.
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