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Abstract. A hidden overall factor of 2 log2s + 1) is detected, when the co-planar Braunstein—
Caves (BC) inequality for Einstein—Podolsky—Rosen—Bohm sgntanglement is expressed in
terms of an information theoretic index of correlation. It is observed that the size of violation
of the normalizedco-planar BC inequality—which is defined by eliminating the overall factor
2log,(2s + 1) from the original BC inequality—decreases with the increase of the spin value
thus exhibiting a satisfactory behaviour in the classical limit.

Entropic Bell inequalities (Braunstein and Caves 1988, 1990, Cerf and Adami 1997,
Wodkiewicz 1995) have been used to highlight the non-classical nature of quantum
entanglement. The usefulness of these information theoretic inequalities is that they are
applicable to any pair of entangled systems—not just two-state systems, as formulated in
the case of usual correlation Bell inequalities, such as e.g., Clauser-Horne—Shimony—Holt
inequalities (Clausest al 1969). It was Braunstien and Caves (1988) who first formulated the
information theoretic Bell inequalities, which apply to any pair of spatially separated entangled
physical systems. They observed that the Einstein—Podolsky—Rosen-Bohm (EPRB) (Bohm
1951, Einsteiret al 1935) spins correlations violate these information theoretic inequalities
for all values of spins, for a specified co-planar geometry of analyser orientations. It has
been observed (Braunstein and Caves 1988, 1990) that the strength of violation grows as spin
s increases, even though the range of analyser orientation angles, over which the violation is
observed, decreases with the increase @fccording to Braunstein and Cave$he biggest
surprise . .is not the presence of violation for al] but rather the increasing size of violation
ass increases. .’ (Braunstein and Caves 1990).

In this paper we identify that there is a hidden overall factor 2d2g+ 1) in the co-planar
BC inequalities, which leads to the increasing size of violation with the increasé/\é show
that the normalized co-planar BC inequalities, obtained by eliminating this overall factor, give
rise to the opposite result, namely, decreasing size of violation as spineases.

We construct joint information entropy (in bitgj (3, b) for EPRB spins correlations
through

s

H@D) == Y P (. hp: 0)10G, P* (kg Ap: 0) (1)
Ao Ap=—5
where
2s
s . _ k . .
P (s Aps 0) = P ;(—1) (2k + 1)c(sks: AyOhg)c(sks; ApOhy) Py (COSH) (2)
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are the quantum mechanical non-local (analyser-dependent) joint probabilities (Mermin 1980,
Usha Deviet al 1997) that the spin compone§1 - a of particle 1 isi, along the analyser

orientationa and the spin componeﬁi b of particle 2 isk, along the analyser orientatidn
c(sks; A01) denote the Clebsch—Gordan coefficients ansl the angle between the analyser
orientationsa andb. The individual probabilitie®* (A,), P* (), which govern the isolated
measurements made independently on particles 1 and 2 can be derived (UsbbdDE997)
from the joint probabilities:

PGy = 3 PG 145 6) = @ 1+1)
N 1 ©)
P (xb):;ﬂ (a2 0) = o

In statistical terminology (Feller 1967)P*(A,), P*(r,) are referred to as marginal
probabilities, since they are realized as marginals of the joint probabifities,, 1,,; 0).
The joint mformatlon entropyd 3, b) gives the total information carried Jomtly by the

spin componentsl aandS,-b. The informationH (3) andH(b) carried separately b$1 a
andS; - b are defined using the marginal probabilitieg1,), P* (A,):

H@ =— ) P'() l0g, P*(e) = l0g,(2s + 1),
o | @)
Hb)=— Y P'()log, P/ (3y) = log,(2s + 1).
rAp=—s8
The cond|t|0nal information entropyi(a|b) gives the information carried by the spin
componen& a under the condition th& - b has assumed a certain value, and is defined by

S

H@ED) =~ > P (11 0)10G, P (ualiy: 0)

Aashp=—5

— H@&b) — H(b)

= H(3,b) — logy(2s +1). (5)
In the above equation we have used the Bayes theorem (Feller 1968)
) PS ()"aa )"bv 0) )
P (Aglhp; 0) = ———— = 2s + DP (Ay, Ap; 0 6
(halhp: 0) PO (25 + DP* (hg. Ap: 0) (6)

for the conditional probabilitie®* (A, |Ap; 6).

It has been realized (Barnett and Phoenix 1989) that the mutual information entropy, i.e.,
the average information carried in common by the subsystems A and B of an entangled system,
given by

H(A; B) = H(A)+ H(B) — H(A, B) (1)
whereH (A), H(B) andH (A, B) denote, respectively, the subsystem entropies and the joint
entropy, serves as an information theoretic index of correlation. The mutual information
entropy is zero when the joint probabilit# (A, B) = P(A)P(B) — H(A,B) =
H(A)+H(B),i.e.onlywhenthe subsystems are statistically independent. Ifthe subsystems are

labelled such thall (B) > H(A), the triangular inequalities (Wehrl 1978) for the information
entropies,

|H(A) — H(B)| < H(A, B) < H(A) + H(B) 8
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lead to the following bounds for the mutual information entropy:
0< H(A; B) < 2H(A). (9)
Thus, a normalized correlation indexOHy (A; B) < 1 can be defined as
H(A)+H(B) — H(A, B)

Hy(A; B) = 21 (1) . (10)

For EPRB spin correlations, the normalized index of correlatigria; B) = [°(0) is given by

2log,(2s +1) — H(a, b)
2log,(2s + 1)
1 H(®)

T2 2log,(2s + 1) )

1°(0) =

where we have used equation (5) to express joint information enﬂﬂﬁyﬁ) in terms of
conditional entropyH (alb) = H (#). We have plotted* (9) in figure 1 as a function of the
angled between the analyser orientations, for spin values % 1, %‘ and 2. We observe
that the correlation index reaches the maximum vélttmr parallel and anti-parallel analyser
orientations. The increasing trend Bf(6) for 6 — 0° andé — 180 highlights the strong
correlation between the spins for nearly parallel and nearly anti-parallel analyser orientations.
In the larges, small¢ limit, the index of correlatior’® (6) assumes the form

2
1o~ 1 ()

1 8
——————|log,— +=lo 12
2~ Blogy2s + 1) ( % oz T 3'0% e) (12)
where it can be clearly seen thdi6) — % asf — 0°.
We now take up the information theoretic Braunstein—Caves (BC) inequalities which
involve the conditional information entropies in the form

H@Db) < H@D) + H([1|d) + H@|b) (13)

whered, b/, &, b denote orientations of the analysers corresponding to particles 1 and 2 in
four different sets of experimental runs. The BC inequalities dictate that the subsystem of
any entangled system must carry an amount of information to be consistent with the local
realistic theory. However, quantum correlations involving a pair of sgiarticles in a singlet

state are observed (Braunstein and Caves 1988, 1990) to violate BC inequalities and hence are
inconsistent with local realism. For the special casg, &@ andb are co-planar and when the
successive vectors in the list are separated by an %@e., a-b=3 -b=43a.b= cos%

anda- b= cosP), the BC inequality is violated if

H(O) = H(®) — 3H (%) (14)

is positive.

It has been observed that the co-planar BC inequality is violated for all valuesTdfe
violation is often attributed to the tight correlation between spins in the region of violation.
With a view to examine the violation in terms of the strength of correlation, we express the
conditional entropyH (9) = log,(2s + 1)(1 — 2I°(0)), in terms of the index of correlation
(using equation (11)) in the co-planar BC inequality to obtain

2log,(2s + 1) [31“ (g) — I‘V(e)} —2log,(2s +1) < 0. (15)
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Figure 1. Information theoretic index of correlatior’(9) for EPRB spins correlations as a
function of the analyser orientation angle(a) spin-%, (b) spin-1, €) spin%, (d) spin-2.

Note that in the above equation, there is an overall factor ZBg+ 1) which increases with
the increase of spin value We define théenormalized’BC inequality for co-planar geometry

through

7°(0) = 31I° (g) - I -1<0. (16)

As the range of violation of any inequality remains unaltered by multiplying it throughout
by a positive number, theormalizedBC inequality is expected to be violated in the range of
angle® for which7(9) (of equation (14)) is positive. However, from the form of equation (16)
it could be observed that (9) cannot be positive i!s(%) < % This observation leads to the
identification of atight correlation domairas one in which the index of correlatidr > %

Note that a variation of the index of correlation frcé‘rﬂ- A to§, (A, § are positive and are
bound through &< I* < %) when the analyser orientations change fr@mo 0, leads to the
violation of equation (16), if & —§ > O.

In order to verify the variation of the size of violation with the increase @fe have
plottedZ° (9) in figure 2 as a function of the angtefor spin valuess = 3,1, 2 and 2, in
the region of violation. The important feature that could be noted from figure 2 ighbat
strength of violation decreases with the increase of spin vali#e, therefore, realize that it
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Figure 2. The left-hand side of normalized BC inequality (equation (I8)p) as a function of
the angle for different values of spin in the region of violation.The inequality is violate®t {#))
is positive. Curver: spin%; curveb: spin-1; curvec: spin—%; curved: spin-2.

is thishidden overall facto® log,(2s + 1) in the original BC inequality which gives rise to the
increasing size of violation as spin value increases.
To further emphasize this observation, we consider the largezall6 form of Z° (6):

‘ (s0)? 1 8
5 (0) ~ I + =1 17
@™ Slog@s + 1 (092 30)2 3 09%¢ n
which is positive for(s6)? < 4. The functionZ® (9) reaches a maximum whesg)® = &
giving rise to the maximum strength of violation as
5
e3log, e
T'Oy) = ————— 18
(%) 2710g,(2s + 1) (18)

in the larges, small¥ limit. It could be observed that, due to the presence of the factor
log,(2s + 1) in the denominator, the size of violation decreases with the increase of.spin

In general, for four different pairs of analyser orientati(ﬁ;sﬁ’), &, B’), &, B) and(@, B),
the normalized BC inequality is given by

Hy(& )+ Hy (0 &) + Hy(&; b) — Hy(& b) <1 (19)
where Hy (3 ), Hy(0'; &), Hy(@; D), Hy(& b), are the mutual information entropies
normalized to their maximum value 2lg@s + 1). Observe that the four parts of mutual
information entropies of the normalized BC inequality involve quantum mechanical joint

probabilities, which can be determined from the statistics of experimental runs with four
different analyser orientations. We emphasize that the mutual entropies contained in the
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normalized BC inequality provide an equally suitable physical basis when compared with the
conditional entropies involved in the original BC inequality. The significance of the normalized
BC inequality is that it exhibits a satisfactory behaviour in the classical limit co.

The chained information inequality of Braunstein and Caves (1988), which extends
the_inequality equation (13) to involvev = 2Q orientations of the analysers,
&, bg, 3, bp-_1,...,80-1, b, 3y, by, assumes, after normalization, the form

N 9 5 ﬁ
(N — 1)1 (m)—1(9)+(1— 2)<0 (20)

for co-planar geometry (where the vecté@sBQ, 3, BQ_l, ..y 80-1, by, ay, are co-planar
and the successive vectors are separated by an g\g‘?gﬁe and in the limitN — oo, leads

to a simpler form/* (6) > % which is violated for alb except multiples ofr, confirming the
earlier observation of Braunstein and Caves (1988).

In conclusion, we have studied information theoretic index of correlation (which is nothing
but the normalized mutual information entropy) for EPRB spawrrelations. The information
theoretic BC inequality, when expressed in terms of the correlation index, reveals a overall
factor 21og(2s + 1), which is observed to give rise to the increasing size of violation of the
inequality ass increases. We have shown that the size of violation ofnibienalizedBC
inequality—obtained by dividing the original BC inequality by the factor 3(@g + 1)—
decreases with the increase of spjrthus restoring a satisfactory behaviour in the classical
limit s — oco.
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